Dígitos finales de las potencias

Solución. En su resolución, la experimentación juega un papel decisivo. Podría uno pensar en calcular tales potencias, pero no hay ordenador que nos proporcione números tan enormes.

Enseguida surge la idea de que 37^{23} , por ejemplo, termina en lo mismo que 7^{23} y así nuestro problema se reduce a ver en qué dígito terminan:

Experimentando un poco, vemos que 1^{23} termina en 1; 5^{23} termina en 5; 6^{23} termina en 6. La cosa es muy sencilla en estos casos.

Experimentamos un poco más haciéndonos una tabla de la cifra final de las potencias sucesivas para los primeros números.

n	1	2	3	4	5	6	7	8	9
n² termina en	1	4	9	6	5	6	9	4	1
n³ termina en	1	8	7	4	5	6	3	2	9
n ⁴ termina en	1	6	1	6	5	6	1	6	1
n ⁵ termina en	1	2	3	4	5	6	7	8	9
n ⁶ termina en	1	4	9	6	5	6	9	4	1

Y así sucesivamente.

Sin necesidad de seguir con la tabla, ahora está claro que, al aumentar exponente en 4 unidades, resultan los mismos dígitos finales. Así:

terminan en n y n²³ termina en lo mismo que n³. Es decir:

terminan, respectivamente, en:

Además, de esta experimentación que hemos hecho resulta que, si:

$$k = 4i + s$$
, $s=1,2,3,4$

entonces n^k termina en lo mismo que n^s . Así, por ejemplo, 7^{86} termina en lo mismo que 7^2 , pues $86=21\times4+2$. Es decir, 7^{86} termina en 9.