

MODELO DE EXAMEN DE QUIMICA (25 AÑOS)

INSTRUCCIONES

- a. El examen de química consistirá en 30 preguntas de tipo test
- b. La duración del examen será de 1,5 horas.
- c. Sólo hay que elegir una respuesta por pregunta.
- d. Cada pregunta correctamente respondida se valorará con 1 punto.
- e. Cada pregunta incorrectamente respondida se calificará negativamente con 0,25 puntos.
- f. No se permitirá la utilización de ningún tipo de texto ni de la Tabla Periódica.
- g. Se autoriza el empleo de calculadora no programable.

PREGUNTAS

- 1.- La configuración electrónica $1s^22s^22p^63s^23p^6$ no puede corresponder a:
 - a) ₁₈Ar
 - b) 20Ca²⁺
 - c) ₁₇CΓ
 - d) $_{16}S^{2+}$
- 2.- Del elemento de número atómico Z=35, podemos afirmar que:
 - a) Es un metal.
 - b) Forma un catión monovalente ya que tiene cinco electrones en la capa exterior (de valencia).
 - c) Tiene una electronegatividad mayor que la de los elementos que están por encima en su mismo grupo.
 - d) Tiene siete electrones en la capa exterior (de valencia).
- 3.- ¿Cuántos electrones con números cuánticos distintos pueden existir en un subnivel con n=2 y l=1?
 - a) 3
 - b) 6
 - c) 4
 - d) 8
- 4.- El orden creciente de la primera energía de ionización para los elementos N (Z=7), Ne (Z=10), Na (Z=11) y P (Z=15) es:
 - a) Na < P < N < Ne
 - b) N < Na < P < Ne
 - c) Na < N < P < Ne
 - d) P < Na < Ne < N
- 5.- Dos compuestos formados por el mismo número de átomos de carbono, hidrógeno y oxígeno tendrán también en común:
 - a) El número de moléculas presentes en la misma masa.
 - b) Los enlaces que se forman entre dichos átomos.
 - c) La entalpía de combustión.
 - d) La reactividad.

- 6.- Dadas las siguientes moléculas: F₂, ClF, HCl, CsF, H₂S y PH₃. Indicar cuál de las siguientes afirmaciones es correcta:
 - a) No existe ninguna con enlace covalente apolar.
 - b) Están ordenadas de menor a mayor polaridad.
 - c) Sólo una posee enlace fundamentalmente iónico.
 - d) Todas son moléculas con geometría plana.
- 7.- Indicar que afirmación es correcta para las moléculas SH₂, O₂, HCN y CF₄.
 - a) SH₂ y O₂ son moléculas polares.
 - b) Sólo tienen geometría lineal SH₂ y HCN.
 - c) Todas ellas, menos el oxígeno, tienen carácter ácido.
 - d) O₂ y HCN presentan algún enlace múltiple.
- 8.- ¿Cuál de las siguientes moléculas es no polar aunque sus enlaces son polares?
 - a) HCl
 - b) H₂O
 - c) BF₃
 - d) NH₃
- 9.- Dadas las siguientes afirmaciones sobre la molécula de dióxido de carbono, indicar cuál de ellas no es cierta.
 - a) Es una molécula lineal.
 - b) Es una molécula polar.
 - c) Tiene enlaces polares.
 - d) Tiene dos átomos de oxígeno por cada átomo de carbono.
- 10.- La reacción entre un elemento Q (Z=16) y otro elemento M (Z=19), con mayor probabilidad formará:
 - a) Un compuesto iónico de fórmula MQ.
 - b) Un compuesto iónico de fórmula MQ₂.
 - c) Un compuesto iónico de fórmula M₂Q.
 - d) Un compuesto covalente de fórmula M₂Q.
- 11.- Un proceso que se produce con desprendimiento de calor y disminución del desorden termodinámico es:
 - a) Espontáneo siempre.
 - b) Nunca espontáneo.
 - c) Espontáneo a bajas temperaturas.
 - d) Espontáneo a altas temperaturas.
- 12.- La entalpía estándar de combustión del $Al_{(s)}$ es de -834,9 kJ por mol de Al. Si reacciona Al con O_2 , ¿en qué circunstancias se desprenderán 1045 kJ de calor?
 - a) Cuando se forman 1,252 moles de Al₂O₃.
 - b) Cuando se forman 0,626 moles de AbO₃.
 - c) Cuando reaccionan 0,299 moles de Al.
 - d) Cuando reaccionan 0,626 moles de Al.

13.- A 291 K, las entalpías de formación del amoníaco en los estados gaseosos y líquidos son, respectivamente: $-46,05 \text{ kJ} \cdot \text{mol}^{-1} \text{ y} - 67,27 \text{ kJ} \cdot \text{mol}^{-1}$. A partir de estos datos, podemos afirmar que la entalpía de vaporización del amoníaco es:

(Datos.- Masas atómicas: N=14, H=1)

- a) $-113,3 \text{ kJ} \cdot \text{mot}^{-1}$
- b) $6,67 \text{ kJ} \cdot \text{g}^{-1}$
- c) $-1,25 \text{ kJ} \cdot \text{g}^{-1}$
- d) $1,25 \text{ kJ} \cdot \text{g}^{-1}$
- 14.- ¿Cuáles serán las unidades para la constante de velocidad (k) de una reacción de segundo orden, cuya ecuación cinética es $V_{\text{reacción}} = k [A]^2$, si la concentración se expresa en mol·L⁻¹ y el tiempo en minutos (min)?
 - a) $mol \cdot L^{-1} \cdot min^{-1}$
 - b) mot^1
 - c) $mot^1 \cdot L \cdot min^{-1}$
 - d) $mol^2 \cdot L^2 \cdot min^{-1}$
- 15.- La ecuación de velocidad de la reacción $A \rightarrow \text{productos es } v = k \text{ [A]}$. Indicar cuál de las siguientes afirmaciones no es correcta:
 - a) Si se añade un catalizador positivo al medio donde se produce la reacción, sin variar la temperatura, la constante de velocidad (k) no puede aumentar.
 - b) La velocidad de reacción y la constante de velocidad pueden ser iguales.
 - c) La constante de velocidad no se ve afectada por las concentraciones de A y de los productos.
 - d) La constante de velocidad se ve afectada por la temperatura.
- 16.- Dado el equilibrio químico en fase gaseosa: $N_2 + 3H_2 \leftrightarrows 2NH_3$ ¿Cómo se obtendría mayor cantidad de amoníaco?
 - a) Aumentando la presión total del recipiente.
 - b) Disminuyendo la presión total del recipiente.
 - c) Disminuyendo la presión parcial del nitrógeno.
 - d) Disminuyendo la presión parcial del hidrógeno.
- 17.- Para el equilibrio: $SO_{2(g)} + Cl_{2(g)} \leftrightarrows SO_2Cl_{2(g)}$, si se añade cloro, manteniendo la temperatura constante:
 - a) El equilibrio no se modifica.
 - b) Se produce un desplazamiento hacia los reactivos.
 - c) Se produce un desplazamiento hacia los productos.
 - d) Se produce un aumento de la constante de equilibrio.
- 18.- En un equilibrio $K_p = K_c$ si:
 - a) Todas las especies son gases.
 - b) Se ha alcanzado el equilibrio.
 - c) Se produce en condiciones homogéneas.
 - d) La variación entre el número de moles gaseosos de productos y reactivos es nula.
- 19.- ¿Cuál de las siguientes afirmaciones acerca de la disolución de diversas sustancias en agua es correcta?

- a) El cloroformo (CHCl₃) es soluble en agua ya que, al igual que le ocurre al NaCl, se disocia completamente en disolución.
- b) El I₂ es más soluble en agua que el NaCl ya que, por ser un sólido molecular, la interacción entre sus moléculas es más débil.
- c) El CH₄ y todos los hidrocarburos ligeros son muy solubles en agua por su capacidad de formar enlaces de hidrógeno con el disolvente.
- d) El butanol no es completamente soluble en agua debido a la cadena apolar.
- 20.- ¿Cuál de las siguientes disoluciones acuosas presenta carácter ácido?
 - a) NaCl
 - b) NH₄OH
 - c) NH₄Cl
 - d) KNO₃
- 21.- Si la K_a del ácido cianhídrico es 6.2×10^{-10} y la K_b del amoníaco es 1.8×10^{-5} , el pH de la disolución acuosa del cianuro amónico será:
 - a) pH = 7
 - b) pH > 7
 - c) pH < 7
 - d) pH = 0
 - 22.- A partir de 200 g de ácido nítrico y 100 g de hidróxido sódico y siendo el rendimiento del 80%, la cantidad que se obtiene de la sal producto de la reacción es:
 - (Datos.- Masas atómicas: N=14, O=16, H=1, Na=23)
 - a) 269
 - b) 212
 - c) 138
 - d) 170
 - 23.- ¿Qué volumen de una disolución concentrada 8M de HCl hay que utilizar para preparar 3 L de una disolución de 2M de HCl?
 - a) 750 mL
 - b) 1333,3 mL
 - c) 2250 mL
 - d) 1666,6 mL
 - 24.- Una disolución tiene pH = 10,82. La concentración de OH de dicha disolución es:
 - a) 1.5×10^{-5}
 - b) 1.5×10^{-11}
 - c) 6.6×10^{-10}
 - d) 6.6×10⁻⁴
 - 25.- Cuando se disuelve acetato de sodio en agua:
 - a) Se producen iones hidróxido.
 - b) Se producen iones hidrógeno.
 - c) Se produce ácido acético e hidróxido de sodio.
 - d) Se hidratan simplemente los iones acetato y sodio.

- 26.- Sabiendo que los potenciales normales de los sistemas $C_{\frac{1}{2}}/C_{\frac{1}{2}}$ y $I_{\frac{1}{2}}/I_{\frac{1}{2}}$ valen respectivamente 1,36 y 0,54 V, podemos afirmar que:
 - a) El yodo oxida al ión cloruro.
 - b) El cloro oxida al ión yoduro.
 - c) El cloro es más básico que el yoduro.
 - d) El cloro reduce al ion yoduro.
- 27.- Dada la reacción de oxidación-reducción:

$$2MnO_4^-_{(ac)} + 5H_2O_{2(ac)} + 6H^+_{(ac)} \leftrightarrows 2Mn^{2+}_{(ac)} + 5O_{2(g)} + 8H_2O$$

- a) El número de electrones puesto en juego en este proceso es de 2.
- b) La especie O₂ es la que resulta de la reducción de H₂O₂ debido al agente reductor MnO₄⁻.
- c) La especie MnO_4^- es el agente reductor y se oxida a Mn^{2+} .
- d) El ión MnO₄ es el agente oxidante que produce la oxidación del H₂O₂ a O₂.
- 28.- En la reacción de combustión del butano, ¿cuántos moles de oxígeno se necesitan para que mar un mol de butano?
 - a) 1 mol.
 - b) 2 moles.
 - c) 5,5 moles.
 - d) 6,5 moles.
- 29.- Un compuesto orgánico tiene de fórmula molecular C₂H₄O. Indicar su nombre entre los siguientes:
 - a) Etanal.
 - b) Etanol.
 - c) Etano.
 - d) Ácido etanoico.
- 30.- Indicar cuál es la respuesta correcta respecto a la siguiente reacción:

- a) Es una reacción de adición y el producto de reacción mayoritario es el 2-cloropropano.
- b) Es una reacción de adición y el producto de reacción mayoritario es el 1-cloropropano.
- c) Es una reacción de sustitución, el producto de reacción mayoritario es el 2-cloropropeno y es isómero de posición del producto minoritario.
- d) Es una reacción de sustitución, el producto de reacción mayoritario es el 3-cloropropeno y es isómero geométrico del producto minoritario.