Chapitre 3 : Les lois de l'électricité

Pour toutes les expériences, tu disposes de 2 lampes différentes:

$\begin{cases} L_1: 6 \text{ V} - 100 \text{ mA} \\ L_2: 6 \text{ V} - 300 \text{ mA} \end{cases}$

1/ Lois concernant l'INTENSITE

Position 1 A1 Position 2 A2 Position 2 Circuit en série Mesur Position Position Position Position A3 Position 3 Question A2 Question A2 L1 limit

Mesure des intensités :

Position 1 : $I_1 = 0.10 \text{ A}$ Position 2 : $I_2 = 0.10 \text{ A}$ Position 3 : $I_3 = 0.10 \text{ A}$

Question : Explique pourquoi L_1 brille davantage que L_2 ? L_1 limite le passage du courant car son intensité nominale est de 0,1 A (résistance plus forte)

Avec tes mots, donne la loi de l'intensité dans un circuit en série (loi qui donne la relation entre I_1 , I_2 et I_3): LOI de l'UNICITE de l'intensité dans un circuit en série :

L'intensité est la même partout dans un circuit en série : $I_1 = I_2 = I_3$

Circuit en dérivation

6 V

Mesure des intensités : Position 1 : $I_1 = 0.40 \text{ A}$

Position 2 : $I_2 = 0.10 \text{ A}$

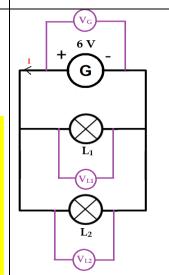
Position 3 : $I_3 = 0.30 \text{ A}$

Avec tes mots, donne la loi de l'intensité dans un circuit en dérivation (*loi qui donne la relation entre I*₁, *I*₂ *et I*₃) : **LOI des NŒUDS** ou **LOI de l'ADDITIVITE** des intensités dans un circuit en dérivation : L'intensité du courant délivré par le générateur (*branche principale*) est égale à la somme des intensités des courants dans toutes

les branches dérivées : $I_1 = I_2 + I_3$

2/ Lois concernant la TENSION

Circuit en série Mesure des tensions :



 $U_{L1} = 4.51 \text{ V}$

 $U_{L2} = 1,50 \text{ V}$

Avec tes mots, donne la loi de la tension dans un circuit en série (loi qui donne la relation entre U_G , U_{L1} et U_{L2}): LOI de l'ADDITIVITE des tensions dans un circuit en série : la tension aux bornes du générateur est égale à la somme des tensions aux bornes de

 $_{\text{chaque dipôle}}:U_G=U_{L1}+U_{L2}$

Position 1

Mesure des tensions :

 $U_G = 6.01 \text{ V}$

 $U_{L1} = 6.01 \text{ V}$

Circuit en dérivation

 $U_{L2} = 6.01 \text{ V}$

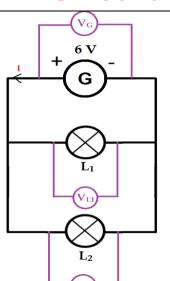
Avec tes mots, donne la loi de la tension dans un circuit en série (*loi qui donne la relation entre U*_G, U_{L1} et U_{L2}): **LOI de l'UNICITE** de la tension dans un circuit en dérivation : La tension est la même aux bornes de dipôles branchés en dérivation


$$U_G = U_{L1} = U_{L2}$$

Bilan : Les lois de l'électricité en continu

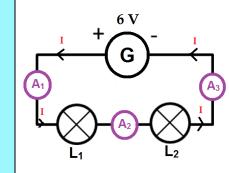
Circuit en série

Circuit en dérivation


Tension

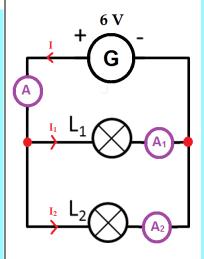
LOI de l'ADDITIVITE

des tensions dans un circuit en série : la tension aux bornes du générateur est égale à la somme des tensions aux bornes de chaque dipôle :


$$U_G = U_{L1} + U_{L2}$$

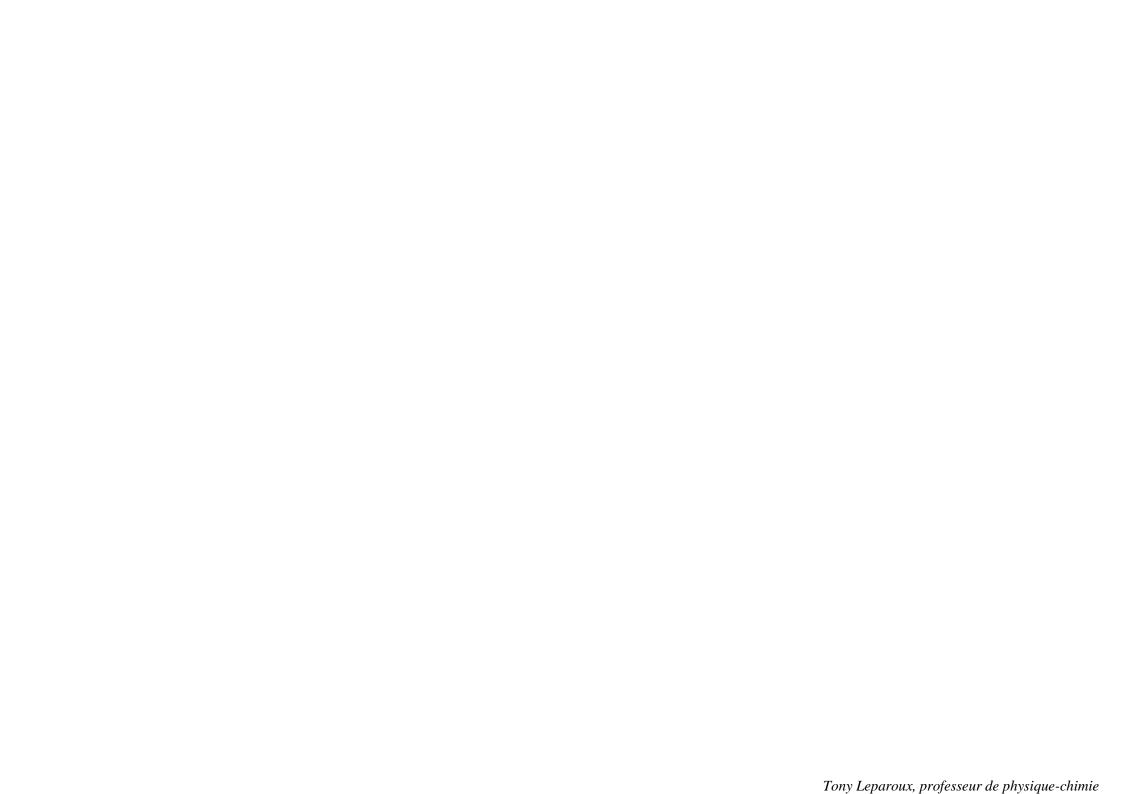
LOI de l'UNICITE de la tension dans un circuit en dérivation : La tension est la même aux bornes des dipôles branchés en dérivation.

$$U_{G} = U_{L1} = U_{L2}$$


Intensité

LOI de l'UNICITE

de l'intensité dans un circuit en série : L'intensité est la même partout dans un circuit en série :


$$I_1 = I_2 = I_3$$

LOI des NŒUDS ou LOI de l'ADDITIVITE des intensités dans un circuit

intensités dans un circuit en dérivation : L'intensité du courant délivré par le générateur (*branche principale*) est égale à la somme des intensités des courants dans toutes les branches dérivées :

$$\mathbf{I}_1 = \mathbf{I}_2 + \mathbf{I}_3$$

