
A Friendly Introduction to The Riemann Hypothesis
by

Thomas Wright

A Math Paper
Appleton, Wisconsin

September 2010

c©Thomas Wright 2010
All rights reserved



Chapter 1

Historical Background:
Straight Cash, Homey and
Other Mathematical Concepts

1.1 He’s Making a List, and Checking it for

Money

On August 8, 1900, David Hilbert, a German mathematician with a penchant
for really cool-looking hats, strode to the board at the International Congress
of Mathematicians in Paris and, in an historic pronouncement, announced
a list of ten problems that he felt would be of fundamental importance in
the 20th century. The mathematicians around the room were shocked, pre-
sumably because many them had never seen ten problems listed in a row
before1. Critical acclaim was immediate, with some critics going so far as
to call it ”The talk of the new century!” and ”The best list of ten problems
I’ve ever seen!”2 Encouraged by his success3, Hilbert soon released the notes
from his talk with a director’s commentary in which he announced thirteen
extra problems (making twenty-three in total); these problems, like their
predecessors, were also met with great critical acclaim.

It often happens that a work, though critically acclaimed, is quickly for-

1Plus, several of them had been studying mathematical abstractions for so long that
they had forgotten how to count to ten, making Hilbert’s enumeration even more shocking.

2Also, Ebert and Roper gave it two thumbs up.
3Although disappointed that no one had commented on how awesome his hat looked.
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CHAPTER 1. INTRO: STRAIGHT CASH, HOMEY 3

gotten. This not the case with Hilbert’s problems. In fact, the result was
quite the opposite, as Hilbert’s list turned out to be creepily prescient in
the new century. Today, seventeen of the twenty-three questions have been
fully or partially resolved; for many of these questions, the solutions (or par-
tial solutions) resulted in breakthroughs that became fundamental to the
development of 20th century mathematics. Just six of the questions remain
completely unsettled, although one of the of the questions (”Construct all
metrics where lines are geodesics”) is considered hopelessly broad and an-
other question (”Is this hat awesome or what?”) has been deemed by many
mathematicians to be ”too rhetorical to pursue.”

Exactly one hundred years later, the Clay Mathematics Institute, in what
could only be described as an act of flagrant plagiarism, published a list of the
seven unsolved problems that they predicted would be the most important
questions of the 21st century. Adding insult to injury, Clay Math even stole
one of the six unresolved problems from Hilbert’s list, a problem known
as the Riemann Hypothesis, and placed it on their own list. Realizing that
their plagiaristic actions risked running afoul of the mathematical community,
the Clay Math Institute felt compelled to make a preemptive peace offering
or, as it is known in more colloquial language, a ”bribe”; they offered a
reward of one million dollars for the solution to any of their seven problems.
Mathematicians, who were now able to claim with a straight face that they
worked in a ”lucrative field” when talking to friends or inquisitive in-laws4,
were satisfied with the offering, and the list of problems was allowed into
circulation.

Of all of the mathematical concepts on the Clay Mathematics list, the
most interesting one for a number theorist is undoubtedly the one million
dollars. However, that doesn’t make for a very interesting paper, so we’ll
talk instead about the second most interesting one: the aforementioned Rie-
mann Hypothesis.

4”Yes, future mother-in-law, I can make millions in mathematics! All I have to do is
solve a couple of math problems.”
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1.2 The Riemann Hypothesis: Yeah, I’m Jeal-

ous

The Riemann Hypothesis is named after the fact that it is a hypothesis,
which, as we all know, is the largest of the three sides of a right triangle. Or
maybe that’s ”hypotenuse.” Whatever. The Riemann Hypothesis was posed
in 1859 by Bernhard Riemann, a mathematician who was not a number
theorist and wrote just one paper on number theory in his entire career.
Naturally, this single paper would go on to become one of the most important
papers in number theory history, a depressing, frustrating, and angering
thought for those of us who will actually work in number theory full-time
for our entire lives and will still never write a number theory paper nearly
that important. In this infuriatingly important paper, entitled Ueber die
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Anzahl der Primzahlen unter einer gegebenen Grösse (which, according to
a translator I found online, translates into English as Possibility of the Size
Lower Part Primes Which Comes to Give), Riemann presented a number
theoretical conjecture that turned out to have far-reaching implications not
just in number theory but throughout all of math and physics. What a jerk.

Riemann’s work, however, was predicated upon the earlier work of Leonard
Euler. We know this because pretty much every mathematician’s work is
predicated upon some earlier work of Euler. Euler was a pretty productive
guy.

We’ll discuss this earlier work of Euler in the next chapter.



Chapter 2

Make My Funk a Z-Func(tion)1

Let us begin with a simple question. What happens if we take the following
sum:

1

1
+

1

2
+

1

3
+

1

4
+

1

5
+

1

6
+ ....?

What happens is that the sum goes off to infinity, indicating that the above
is a dumb question.

Lets try again. What happens if we take another sum:

1

12
+

1

22
+

1

32
+

1

42
+

1

52
+

1

62
+ ....?

This one is actually a little more interesting:

1

12
+

1

22
+

1

32
+

1

42
+

1

52
+

1

62
+ .... =

π2

6
.

Taking the sum
1

13
+

1

23
+

1

33
+

1

43
+

1

53
+

1

63
+ ....

is less interesting (it equals about 1.202), but this one’s kind of cool:

1

14
+

1

24
+

1

34
+

1

44
+

1

54
+

1

64
+ .... =

π4

90

Euler saw all of these identities2 and was so inspired that he asked the fol-
lowing question:

1Any fans of the band Parliament out there who got this reference? No? Oh. Never
mind, then.

2Actually, he was the one who discovered them.
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The Euler Question: Get a load of this expression:

1

1s
+

1

2s
+

1

3s
+

1

4s
+

1

5s
+

1

6s
+ ....

Are there any s’s for which interesting things happen (besides 2 and 4)?

When someone asks a good question like this, the first thing that we math-
ematicians do is start naming everything in the problem because naming
things is way easier than solving math problems. Let’s give our expression a
name:

Definition: Write the above expression as Z(s), i.e.

Z(s) =
1

1s
+

1

2s
+

1

3s
+

1

4s
+

1

5s
+

1

6s
+ ....

So Z(2) = π2

6
, Z(4) = π4

90
, etc.

Now, we can restate the question above, which still doesn’t change any-
thing but again gives us the illusion of doing something productive:

The More Economical Euler Question: What happens with Z(s) when
s isn’t 2 or 4?

It looks like we’ve succeeded in asking our question in as few characters
as possible. That’s progress.

Unfortunately, the answer isn’t going to be quite as nice as we hoped.

Partial Answer: There are many, many values that are completely un-
interesting.

What’s the problem? Well, remember how we said that Z(1) went off to
infinity3? It turns out that ”goes off to infinity” is not an interesting thing
for Z(s) to do4. Moreover, it turns out that 1 isn’t the only place where s

3Well, okay, we didn’t say it explicitly, but we told you what Z(s) is, so plug in 1 for s
and look what you have. What, do we have to do everything around here?

4Okay, I suppose it’s a little interesting, but compared to something like π2

6 ? Come on.
It’s no contest.
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goes off to infinity. For example, if you take any positive integer and raise it
to the zero, you get 1. So

Z(0) =
1

10
+

1

20
+

1

30
+ ... =

1

1
+

1

1
+

1

1
+ ... = 1 + 1 + 1 + ...

which undoubtedly goes off to infinity as well.
It gets even worse if s is a negative number. Remember that having a

negative exponent flips the fraction over (i.e. 1
x−2 = x2). So for things like

s = −1, we have

Z(−1) =
1

1−1
+

1

2−1
+

1

3−1
+ ... = 11 + 21 + 31 + ...

which is also getting really, really big. This is obviously going to be a problem
for any negative s. Basically, we have a function that’s not even going to be
defined half of the time.

From these observations, we have the following theorem to describe just
how annoying and useless Z(s) can be:

Major Theorem: If s ≤ 1 then the function Z(s) blows.5

2.1 Why Was Euler Thinking About That

Function, Anyway?

It’s a funny story, actually. One day, the positive integers were minding their
own business, patiently waiting in line to be added up in the Z-function,
hoping that the operator hadn’t chosen an s that would make them all blow
up, when all of a sudden.....

....a rebel gang of numbers showed up:(
1

1− 1
2s

)(
1

1− 1
3s

)(
1

1− 1
5s

)(
1

1− 1
7s

)(
1

1− 1
11s

)(
1

1− 1
13s

)
....

5Here, by ”blows,” we of course mean the conventional mathematical definition of
”blows up to infinity.” I don’t know why you would have thought I meant something else.
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Good God, thought the integers, those are the prime numbers6! And they’ve
arranged themselves in a pattern to make themselves equal to Z(s)!

Z(s) =
1

1s
+

1

2s
+

1

3s
+

1

4s
+

1

5s
+

1

6s
....

=

(
1

1− 1
2s

)(
1

1− 1
3s

)(
1

1− 1
5s

)(
1

1− 1
7s

)(
1

1− 1
11s

)(
1

1− 1
13s

)
....

The positive integers were aghast at the insolence of those primes. The
primes had found a vehicle with which they could turn statements about
integers into statements about prime numbers. And they had done it by
hijacking the integers’ beloved Z(s), too!

While the non-prime integers may still harbor some resentment over this
coup, we number theorists view this revolution in much the same way Amer-
icans view the American Revolution7. It means that if we want to think
about questions related to prime numbers, we can use this Z(s) to translate
them to questions about regular old positive integers, which are much easier
to deal with8. Since number theorists are obsessed with primes9, this is, in
the eloquent words of one high-ranking federal official, a ”big f***ing deal.”

6I was going to say, ”Good God, that’s the prime numbers’ music!” but I wasn’t sure
how many people reading this would get references to professional wrestling.

7I would guess that the number 2 is probably the George Washington figure here.
8Don’t believe me that positive integers are easier than primes to deal with? Okay,

smarty pants, answer me these questions: What’s the next prime number after 7549?
What’s the next positive integer after 7549? Which question was easier? Yeah, that’s
what I thought.

9And for good reason.



Chapter 3

The Zeta Function: Magical,
Mystical, and....Dear God,
What Is That Thing?

Despite the fundamental importance of Z(s), Euler’s efforts to tame this
function and domesticate it and maybe make it do tricks were hamstrung by
the fact that it always seemed to be blowing up at inopportune times1. As
a result, he gave up and spent the remainder of his life going blind working
on other mathematics in a dark attic.

The function continued to lay prostrate in its useless state for over half
of a century until Bernhard Riemann came along. He took the function into
his office, watched it self-destructively blow up any time a negative number
was mentioned, and decided that it needed help. Although Riemann was
not a number theorist by trade, he felt, much like that guy in the movie
”Lorenzo’s Oil,” that he could teach himself enough number theory to cure
Z of its horrible ailment.

1I would have to imagine that it would be inconvenient to have a household pet that
would inexplicably explode from time to time.

10
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After months in his basement laboratory2, Riemann emerged with what
he thought was a remedy: a new function that he called ζ (the Greek letter
zeta) because Riemann mistakenly thought that he was Greek. It was a
function that had the scientific importance of the Frankenstein monster3 and
the aesthetic appeal of, well, the Frankenstein monster. Take a look at this

2Riemann probably didn’t have a basement laboratory. He probably had a cushy
university office with a comfy couch where he would lie down and sometimes take naps,
and then sometimes people would knock on his office door and he would groggily tell them
that he wasn’t napping but instead ”thinking about mathematics.” Believe me, that little
trick isn’t fooling anybody, Riemann.

3I suppose that the Frankenstein monster didn’t have any actual scientific importance
since it was a fictional monster, but the scientists in the movie all looked pretty impressed,
so that’s close enough for me.
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thing:

ζ(s) =
1

1− 21−s

∞∑
n=0

1

2n+1

n∑
k=0

(−1)k
n!

k!(n− k)!
(k + 1)−s.

It’s hideous4!5

Why is this a fix, you ask? Well, let’s take it for a test drive and try out
some values. First, let’s try s = 2:

ζ(2) =
π2

6
.

Wait, we’ve seen that value before. That’s Z(2)!
Now, let’s do another one:

ζ(4) =
π4

90
.

That’s Z(4)!
We can try value after value for s, but the same result will keep happening:

Riemann’s Result: For any s for which Z(s) doesn’t blow up, ζ(s) = Z(s).

Riemann had found a function that mirrored Z(s). Unlike Z(s), though,
ζ(s) didn’t blow up if s was less than 1. And ζ was prepared to handle
all kinds of numbers! Fractions! Decimals! Imaginary numbers like

√
−1!

Combinations of real numbers and imaginary numbers! ζ(s) was like a post-
spinach-Popeye version of Z(s).

Unfortunately, like Achilles, ζ still had one flaw. There was one single
value for s that ζ couldn’t handle:

Fundamental Statement About Zeta: ζ(1) is undefined.

Oh well. You can’t have everything.

4Sometimes, in an attempt to get the same amount of shock value in less space, math-
ematicians will consolidate notation and write the function as

ζ(s) =
Γ(1− s)

2π

∮
γ

uz−1

e−u − 1
du.

5There’s a more thorough explanation of how Riemann got from Z(s) to ζ(s) in Ap-
pendix A.
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3.1 Getting Back To Our Original Question

Now that we’ve found a suitable replacement for the mercurial Z(s), we can
try asking Euler’s question again:

The Euler Question (again): Is there anything interesting about ζ(s)?

This question can often be a dog-whistle type question for mathematicians;
when we say, ”Is it interesting?”, we often mean, ”Does it hit zero a lot?”
That may not be interesting to everyone, but we mathematicians think zero
is really, really fascinating. We’re kind of like that kid with the video camera
in ”American Beauty” who thinks that a bag blowing in the wind is the most
beautiful thing in the world; you may think we’re weird, but, well, who asked
you anyway?

Since ”interesting” means different things to different people anyway, lets
try thinking about this zero stuff and see if it gets us anywhere:

The Euler Question (yet again): When does ζ(s) hit zero?

There are actually quite a few places where it is easy to show it hits zero:

Partial Answer: ζ(s) = 0 when s = −2,−4,−6,−8,−10, ....

OK. We’re partway there. Those are the ones that are actually pretty easy
to find. What about other ones?

The Euler Question (for the last time, I swear): Okay, okay. Be-
sides negative even integers, when does ζ(s) hit zero?

We don’t have all the answers to this question, but here’s one6:

ζ(
1

2
+ 14.134725142i) = 0.

Here’s another one:

ζ(
1

2
+ 21.022039639i) = 0.

6In case you’ve forgotten, i =
√
−1.
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And another:

ζ(
1

2
+ 25.010857580i) = 0.

And yet another:

ζ(
1

2
+ 30.424876126i) = 0.

Starting to notice a pattern? They all seem to be 1
2

plus some multiple of i.
It would be natural to ask whether this pattern will continue. It’s so

natural to ask, in fact, that Riemann beat you to it by over 150 years.

The Riemann Question: Let’s ignore those negative even integers for now.
If ζ(s) = 0, does that mean that s is 1

2
plus a multiple of i?

This question has a less than satisfactory answer:

The Riemann Answer: I have no earthly idea.

Coming up with a more satisfactory answer (such as ”yes” or possibly even
”no”) is such a difficult thing to do that a $1,000,000 reward has been
promised to the person who finally does. The best we currently have is
the following:

The Riemann Guess: The answer looks like it should be yes (?)

or, in mathier speak:

The Riemann Hypothesis (The Riemann Guess with Fancier Words):
If ζ(s) = 0 and s is not a negative even integer than s is 1

2
plus a multiple of i.

or, in even mathier speak:

The Riemann Hypothesis (Take 2): If ζ(s) = 0 and s is not a neg-
ative even integer than s = 1

2
+ it for some real number t.

The Riemann Hypothesis is considered by many mathematicians to be the
most important unsolved problem in mathematics today.
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3.2 Wait, Wait, What? The Question of When

Some Esoteric Function Hits Zero is The

Most Important Problem In Math?

Yep.

3.3 How?

I’m glad you asked. Because the Riemann Zeta Function is based on such
a simple equation (namely, Z(s)), it’s something that comes up in a lot of
computations, so having a good understanding of it would help us calculate
out all sorts of interesting properties about integers and primes numbers. As
far as conjectures go, it’s not as sexy (or as likely to generate crank mail) as
something like the Twin Primes Conjecture, but we all know that beauty is
skin-deep, and the Riemann Hypothesis is nothing if not deep7.

3.4 Can You Give An Example of Something

That the Riemann Hypothesis Can Show

Us?

Funny you should ask. The next chapter is all about one of the most famous
examples: Gauss’ Prime Number Theorem.

7Heck, it took me like ten pages to define the stupid thing. That’s pretty deep.



Chapter 4

Application: Primes on Parade

4.1 Ennui is the Mother of Invention

Let us begin with a question which is actually three questions:

Question(s): How many prime numbers are there up to 100? How about up
to 1,000? Or 1,000,000?

One way of answering the above is to manually count all of the primes up to
100 or 1,000 or 1,000,000. I would do that, except that it sounds like a lot
of work and would be kind of boring, and, besides, the Red Sox game is on.
So that’s out.

We are forced, then, to rephrase our question:

Better Question: Counting is boring, and I’m lazy. Is there some for-
mula that I could use where I just plug in some number and it will do all the
work for me?

This was the question that a fifteen-year old named Carl Friedrich Gauss
considered in 1792. Unlike me, Gauss did not have an urgent Red Sox game
to attend to, so he sat down, looked through the data, and came up with a
pretty good answer:

Gauss’ Answer: The number of primes less than x is about x
lnx

.

16
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So if we wanted to know the number of primes less than 1,000, we could
just calculate 1,000

ln 1,000
and we’ve got a pretty reasonable estimate.

This work would have been impressive enough for somebody who wasn’t
yet old enough to drive1. However, Gauss wasn’t satisfied and announced,
”No! I can do even better! I shall come up with a function that comes even
closer to the correct number of primes! And the function will be easy to
calculate!”

Although this sounded like a bunch of empty promises to the wary public
in an election year like 1792, Gauss actually succeeded in his quest and found
exactly the function he was looking for. He called this function Li because
he, like most 18th century number theorists, was a big fan of kung-fu legend
Bruce Lee2.3 Since Li actually turns out to be pretty straightforward to

1Although I suppose this was less of an issue before the invention of the automobile.
2Oddly enough, Li is also the first letters of the words ”Logarithmic Integral.” Coinci-

dence? Probably. I’m still going with the Bruce Lee explanation for the name.
3If you’re curious, the actual definition of Li is given by

Li(x) =

∫ x

2

dt

ln t
.
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calculate, if we want to find the number of primes up to 1,000, we can just
calculate Li(1, 000) and we’ve got an even better estimate than before4. This
realization deserves bold letters:

The Prime Number Theorem: The number of primes less than x is
approximately Li(x).

4.2 Riemann Hypothesis: Karate Kicking Li’s

Error Terms Since 1859

In the last section, we made a lot of nebulous statements like, ”This is a
good estimate,” or ”This is an even better estimate.” This is unfortunate,
as we mathematicians don’t like ambiguously descriptive words like ”good”
because they don’t really tell us anything. We are forced, then, to ask the
question, ”How good of an estimate is this, anyway?” Annoyingly, this ques-
tion also uses the word ”good,” but we’ll let it slide because it’s a useful
question; in fact, it is such an important question that it deserves italics:

The Li Question: How closely does Li estimate the number of primes less
than x?

As before, we start by naming things. The most obvious candidate for a
makeover is ”the number of primes less than x,” which is annoying to write
out all the time. To help with this, I’m going to call this quantity P (x).5

Armed with this notation, we rephrase the question and pretend that we’ve
accomplished something in doing so:

If you weren’t curious, well, too bad. It’s your fault for looking down here at the footnote
in the first place.

4It should be noted that while Gauss came up with these guesses, they weren’t proven
to be correct until 1896. In other words, instead of taking the five minutes to count the
number of primes up to 1,000, mathematicians spent hours coming up with a guess for
what the answer should be, then spent over a hundred years proving that the guess was
correct. Yep, that was productive.

5Mathematicians actually call this π(x); however, since we already have π = 3.14159....
in this paper, I didn’t want to confuse the readership.
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The More Economical Li Question: How far apart do Li(x) and P (x)
get?

Sometimes, we call the difference between Li(x) and P (x) the error term
in the Prime Number Theorem. Sometimes, we don’t. Really, it just de-
pends how we’re feeling.

In our pre-Riemann Hypothesis world, the answer to the above question
was unsatisfying:

The Li ”Answer”: Hopefully, not very.

In fact, we know that Li(x) and P (x) can differ by as much as
√
x · ln x

because we’ve seen it in actual data. The hope is that they don’t differ by
much more than that because

√
x · ln x is pretty small relative to the number

things we’re counting, which would mean that Li function does a really good
job of approximating P (x).6 In the last hundred years, mathematicians have

6Although you’d expect no less from a function named after Bruce Lee.
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come up with better and better answers, but we’re still nowhere near where
the data indicates that we should be.

On the other hand, if the Riemann Hypothesis were true, we would have
a very, very good answer to this question:

The Li Answer with Riemann: If the Riemann Hypothesis is true then
Li(x) and P (x) never differ by more than about

√
x · lnx.

In other words, what we hope to be true is actually true if the Riemann
Hypothesis is correct. That’s a pretty powerful hypothesis.

Our story would normally end here, except that there’s actually a weird
sidenote to this:

The Li Answer with Riemann, but Backwards: If Li(x) and P (x)
never differ by more than about

√
x · lnx then the Riemann Hypothesis is

true.

So as it turns out, the question about the error term and the Riemann Hy-
pothesis are actually the same question; if you prove one of them, the other
is necessarily true.

Man, math is weird sometimes.



Chapter 5

Appendix A: Analytic
Continuation

In this section, I’ll discuss a little more of the math that goes on. If you aren’t
really interested in the math behind it, then.....wait, seriously? You spent
the last twenty pages reading about the Riemann Hypothesis but don’t care
about math? What kind of garbage is that? Suck it up and keep reading.

5.1 Riemann Oils the Z-Function

5.1.1 Number Theoretical Patch: Better than Number
Theoretical Gum

Let’s go back to Riemann’s idea. When we last left our hero, he had stumbled
upon the following creature:

Z(s) =
1

1s
+

1

2s
+

1

3s
+

1

4s
+ ....

This function was having a hard time getting through the world because it
exploded at the mere mention of numbers less than or equal to 1. Riemann
felt that this function would benefit from some sort of patch, so he decided
to try multiplying it by (1− 2

2s
).1 Armed with this patch, Z became a little

1This is quite similar to the movie ”Patch Adams”, wherein Patch fixes his friend’s
leaky cup by multiplying it by (1− 2

2s ).

21
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less temperamental:

(1− 2

2s
)Z(s) =

1

1s
− 1

2s
+

1

3s
− 1

4s
+

1

5s
− 1

6s
....

The right hand side of this function is now defined when s > 0. That’s
progress.

How does this help? Well, Riemann decided to divide both sides of the
above by (1− 2

2s
). This gives

Z(s) =
1
1s
− 1

2s
+ 1

3s
− 1

4s
+ 1

5s
− 1

6s
....

1− 2
2s

.

Now, he had an expression for Z that was defined for s’s all the way down to
zero. He decided to celebrate in traditional mathematics fashion by renaming
his function2; from now on, this Z would become known as......ζ:3

ζ(s) =
1
1s
− 1

2s
+ 1

3s
− 1

4s
+ 1

5s
− 1

6s
....

1− 2
2s

.

5.1.2 An Obvious Symmetry

All right, so we’ve gotten s down to 0 instead of 1. How do we get s to go
the rest of the way?

Well, as it turns out, if s is between 0 and 1, ζ(s) has a very nice symmetry
to it. In fact, I’m sure you noticed this symmetry immediately, so I don’t
need to point it out, but I’ll do so anyway:

ζ(s) = 2sπs−1 sin(
sπ

2
)

[∫ ∞
0

e−yy−sdy

]
ζ(1− s)

when s is between 0 and 1. That was obvious.
Now, note that if you plugged in, say, 1

4
for s, you end up with ζ(3

4
) on the

right-hand side. This isn’t much of an improvement, because we can already
calculate ζ(1

4
), so we basically just took something we knew and made it

harder.
But Riemann had another thought. What if you plugged in, say, -3 for

s? Then the above becomes:
2We mathematicians know how to throw rollicking parties.
3Note that ζ is still not defined for s = 1 because if we plugged in 1 for s, the bottom

would zero and division by zero is bad. Very, very bad.
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ζ(−3) = 2−3π−4 sin(
−3π

2
)

[∫ ∞
0

e−yy3dy

]
ζ(4).

This is ugly. However, it’s doable. Or rather, the right side is doable; ζ(4)
can be easily calculated, and there’s no reason you couldn’t calculate the rest
of the things on the right hand side as well4. But wait - we’ve got an equal
sign, and the thing on the right is defined - the thing on the left is defined,
too (and equals the thing on the right). So ζ(−3) is finally defined! And this
definition doesn’t even involve the word ”blow”.

What’s special about -3? Nothing! We could have done this for any
negative number. In other words, if I wanted to find ζ(s) for some negative
value of s, I could simply plug this negative value into the expression above;
the right-hand side would give me a bunch of stuff I could calculate, including
ζ of some positive number (which has already been defined). Armed with
this trick, we can now evaluate ζ for anything - except, of course, s = 1.5

And thus, the Z-function was made whole.

4Note that I say that you can calculate it because I certainly have no interest in doing
so.

5In case you’re wondering, mathematicians have a word for a function like this that
works nicely at every possible s except for some limited number of values (in this case,
one); that word is meromorphic. They also have some words for the points where the
function isn’t defined, but those words a bit too colorful for this essay and need not be
repeated here.


