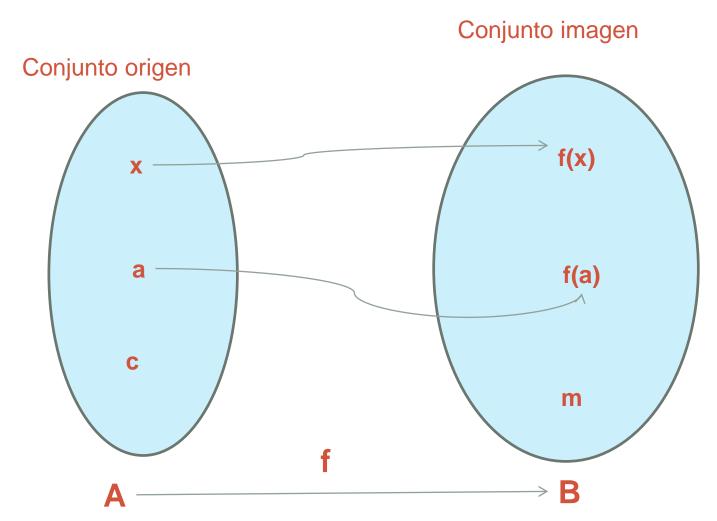
# FUNCIONES DE VARIABLE REAL

**Definiciones** 

# Definición

- Una función f es una correspondencia que asigna a cada elemento x en un conjunto A exactamente (uno y sólo un) elemento en un conjunto B, al que denotaremos por f(x).
- Al conjunto A de llamaremos conjunto origen y al conjunto B conjunto imagen.
- Pueden existir elementos del conjunto origen que no tengan ninguna imagen
- Pueden existir elementos del conjunto imagen que no tengan ningún origen.

# Esquema



## Notación

- Se dice que la función es real, de variable real, cuando los conjuntos origen e imagen son los números reales.
- Un símbolo arbitrario que representa los valores posibles del conjunto origen se denominará variable independiente. Utilizaremos en esta presentación normalmente la variable x.
- Un símbolo también representará la imagen de la variable independiente, es decir, el elemento del conjunto imagen correspondiente a un elemento del conjunto origen a través de la función. Utilizaremos en esta presentación normalmente la variable y.

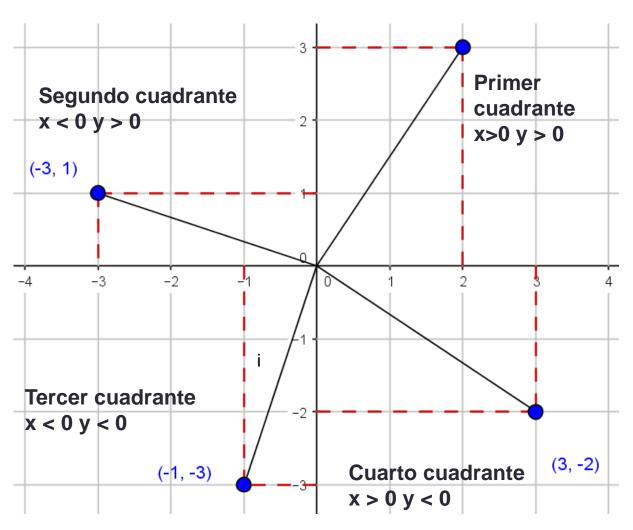
# El plano cartesiano

- Se utiliza, entre otras, para representar funciones.
- Está formado por dos rectas perpendiculares, denominadas ejes.
- El eje horizontal se denomina eje de abscisas y el eje vertical eje de ordenadas.
- El punto de corte de los ejes se denomina origen.
- El plano queda dividido en 4 partes, denominadas cuadrantes.

# Representación de puntos en el plano

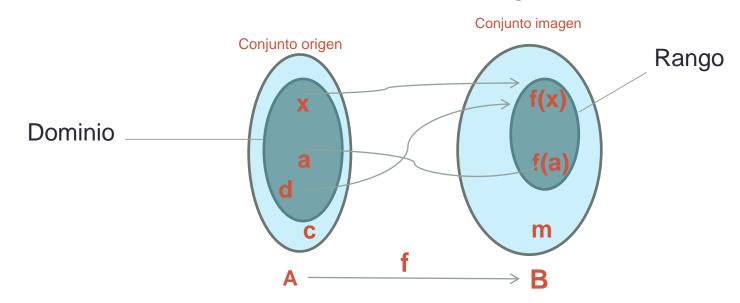
- Cada punto del plano queda representado por un par ordenado (a,b):
  - La primera componente (a) es la distancia al origen de la proyección al eje de abscisas del segmento que une el origen y el punto.
  - La segunda componente (b) es la distancia al origen de la proyección al eje de ordenadas del segmento que une el origen y el punto.
- Cuando se representa una función, en el eje de abscisas se representa la variable independiente y en el eje de ordenadas eje de ordenadas.

# Ejemplo



# Dominio y rango (o recorrido)

- El **dominio** de una función es el subconjunto del conjunto origen que tiene al menos una imagen, es decir, donde tiene sentido que la función se encuentre definida.
- El **rango** de una función es el subconjunto del conjunto imagen que tiene al menos un elemento origen.



# Representación / definición de funciones

- Hay cuatro formas de representar una función:
  - Con lenguaje natural (descripción mediante palabras)
  - Numéricamente (utilizando una tabla de valores)
  - Visualmente (utilizando una gráfica)
  - Algebraicamente (mediante una fórmula explícita)
- Ninguno de los métodos es excluyente, dependiendo de la función, un método será mejor que otro complementándose todos ellos.

# Gráficas y funciones

- La gráfica de una función permite observar el comportamiento de una función.
- Permite también conocer el valor de las variables dependientes e independientes



# Ejemplos I

 El área de un círculo (definición mediante lenguaje natural) se puede expresar mediante la siguiente fórmula algebraica

$$A(r) = \pi \cdot r^2$$

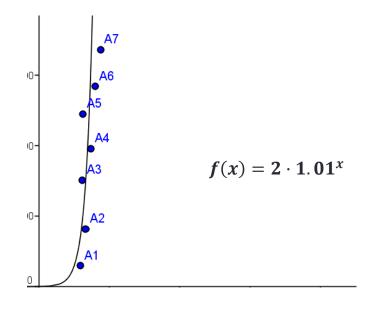
- También es posible recopilar en una tabla diferentes valores del radio y el área que le corresponde al círculo.
- Su gráfica se corresponde con media parábola, pues el radio debe ser siempre positivo, siendo el dominio  $\{x \in \mathbb{R} | x > 0\} = (0, +\infty)$ , y el recorrido también $(0, +\infty)$  pues las áreas también son positivas.

# Ejemplo 2

 Podemos disponer de un conjunto de pares de valores que representan, por ejemplo, el crecimiento de una población bacteriana a lo largo del tiempo.

| Tiempo<br>(minutos) | Población |
|---------------------|-----------|
| 587.5               | 296.3     |
| 663.5               | 815.3     |
| 612.9               | 1511.6    |
| 739.4               | 1954.6    |
| 625.5               | 2448.3    |
| 802.7               | 2840.7    |
| 878.7               | 3359.7    |

Como en la realidad, una función puede comenzar por una descripción, posteriormente en una tabla y finalmente modelizado por una función:



# Ejemplo 3

 No siempre la representación verbal o la gráfica de una función es la mejor forma de representarla. Por ejemplo, el coste del envío de un paquete depende de su peso y es mas conveniente representar la función de forma tabular

| Peso (kg) | Euros        |
|-----------|--------------|
| 0,5 kg    | 51           |
| 1,0 kg    | 51           |
| 1,5 kg    | 53,45        |
| 2,0 kg    | 53,45        |
| 2,5 kg    | 56,45        |
| 3,0 kg    | 56,45        |
| 3,5 kg    | <b>57,</b> 5 |
| 4,0 kg    | <b>57,</b> 5 |
| 4,5 kg    | 58,45        |
| 5,0 kg    | 58,45        |

# Ejemplos: dominio de una función

• Calculad el dominio de la función  $f(x) = \sqrt{x+3}$ 

El cálculo de la raíz cuadrada negativo no tiene sentido por lo que exigiremos que  $x + 3 \ge 0$ , por tanto, el dominio es,  $[-3, +\infty)$ 

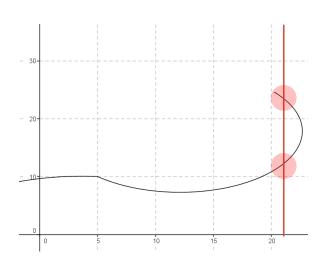
• Calculad el dominio de la función  $f(x) = \frac{1}{x^2-4}$ 

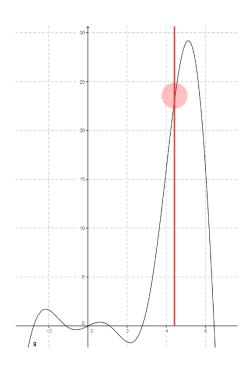
La división por cero no tiene sentido, por tanto, exigiremos que  $x^2 - 4 \neq 0$  lo que ocurre cuando x es distinto de -2 y 2. Por tanto, el dominio es  $\mathbb{R} - \{-2, 2\}$ 

# Prueba de la línea vertical

 Una curva en el plano se corresponde a una gráfica de una función si y sólo sí no existe una línea vertical que interseca a la curva en más de un punto.

Esta gráfica no se corresponde con una función



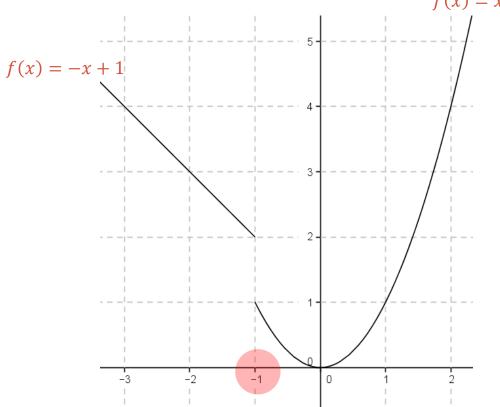


Esta gráfica se corresponde con una función

# Funciones definidas a trozos

 Una función se encuentra definida a trozos cuando a distintas partes de su dominio se le asigna una fórmula diferente.

$$f(x) = \begin{cases} -x + 1 & si \ x \le -1 \\ x^2 & si \ x > -1 \end{cases}$$



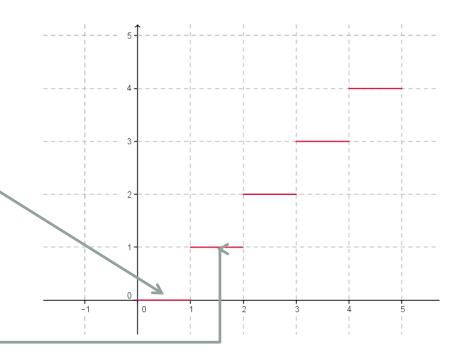
# Ejemplo I

• Parte entera de un número:  $f(x) = parte\_entera(x)$ 



Los números comprendidos entre 0 y 1 (sin incluir éste víltimo), su parte entera es 0.

Los números comprendidos entre 1 y 2 (sin incluir éste último) su parte entera es 1....



# Simetría: función par

- Si una función verifica que f(-x)=f(x) para cualquier valor x de su dominio, entonces se dice que la función **f es par**.
- La importancia geométrica de que una función sea par es que su gráfica es simétrica respecto el eje OY.
- Por tanto, si somos capaces de dibujar la función para x>0, por reflexión, podremos dibujar la función para los valores de x negativos.

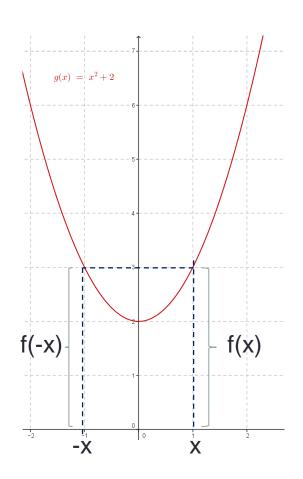
# Simetría, función impar

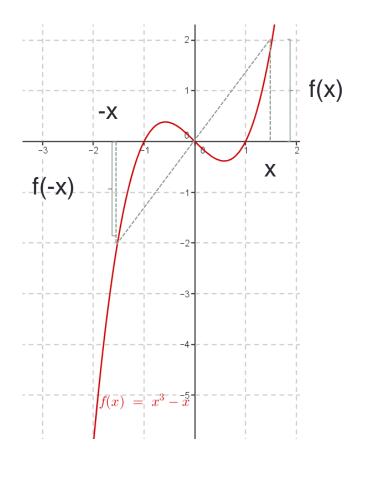
- Si se verifica que -f(x)=f(-x) para cualquier valor x del dominio de la función, se dice que la función **es impar**.
- La importancia geométrica de que una función sea impar es que su gráfica es simétrica respecto el eje origen de coordenadas.
- Por tanto, si somos capaces de dibujar la función para x>0, realizando un giro de 180º con centro el origen de coordenadas seremos capaces de dibujar la función.

# Ejemplo I: función par, función impar

La función 
$$f(x) = x^2 + 2$$
 es par pues,  
 $f(-x) = (-x)^2 + 2 = x^2 + 2 = f(x)$ 



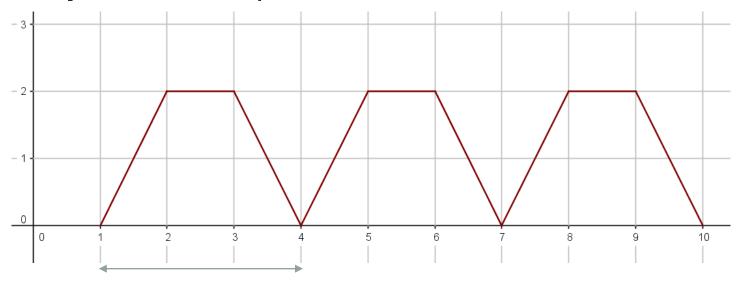




# Funciones periódicas

Una función se dice periódica si tiene la misma imagen a intervalos regulares de la variable independiente.

Una función f(x) es periódica si existe un número p tal que pueda hacer f(x+p) = f(x) para todas las x. Al menor número p se le llama período.



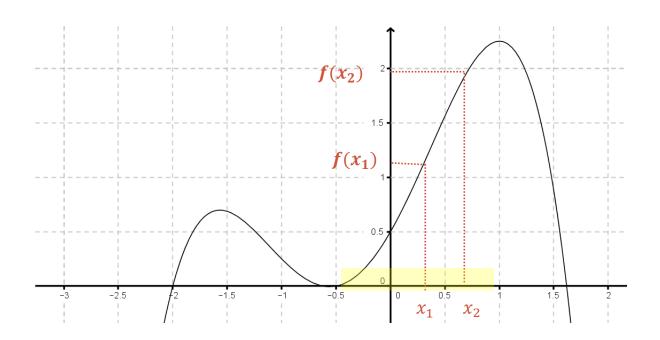
El periodo son 4 unidades

# Crecimiento de una función

- Una función f se dice que **crece** en un intervalo I si  $f(x_1) < f(x_2)$  cualesquiera  $x_1 < x_2$  valores que pertenezcan al intervalo I.
- Una función f se dice que **decrece** en un intervalo I si  $f(x_1) > f(x_2)$  cualesquiera  $x_1 < x_2$  valores que pertenezcan al intervalo I.

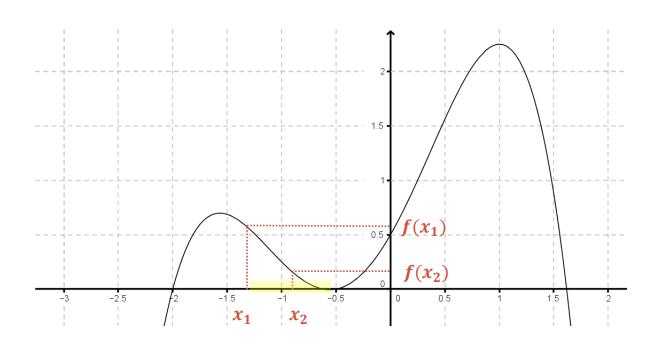
# Ejemplo: función creciente en un intervalo

Esta función en el intervalo (-0'5,1) es creciente, pues verifica para cualquier par de puntos que se encuentren en el intervalo que la "imagen del mayor es mayor que la imagen del menor"



### Ejemplo: función decreciente en un intervalo

Esta función en el intervalo (-1'5,-0'5) es decreciente, pues verifica para cualquier par de puntos que se encuentren en el intervalo que la "imagen del mayor es menor que la imagen del menor"



# RECTAS

# La recta y = mx

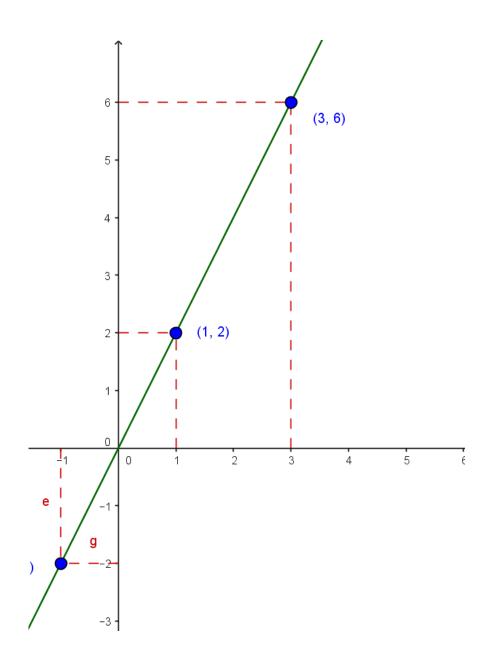
- Todas las funciones que están definidas algebraicamente por y = mx tienen como gráfica una línea recta y se denomina función lineal.
- El valor *m* se denomina pendiente de la recta y representa la inclinación de la recta respecto del eje de abscisas. Este valor distingue una función lineal de otra.
- El valor *m* se obtiene como cociente de la distancia de dos valores del conjunto imagen (eje de ordenadas) y la distancia de los valores del conjunto origen (eje de abscisas)

# Ejemplo

La función f(x) = 2x tiene 2 de pendiente. Por cada unidad que aumenta x, la imagen (y) aumenta el doble

### Tabla de valores

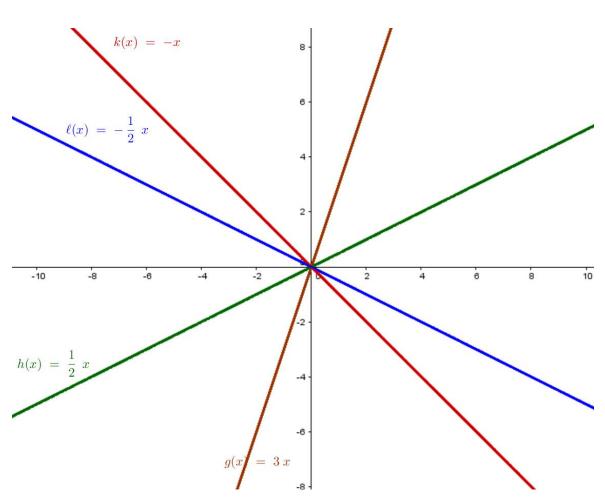
| X  | f(x) |
|----|------|
| -1 | -2   |
| 0  | 0    |
| 1  | 2    |
| 2  | 4    |
| 3  | 6    |



# Ejemplo

Las rectas a mayor pendiente mayor inclinación

Las rectas que tienen una pendiente negativa son decrecientes.



# La recta y = mx + n

- Todas las funciones que están definidas algebraicamente por y = mx + n tienen como gráfica una línea recta y se denomina función afín.
- El valor m es la pendiente de la recta.
- El valor n es el valor de la ordenada para x=0; se denomina ordenada en el origen.
- Si n=0 representará la función lineal, si m=0 la función es constante, siendo su gráfica una recta horizontal.

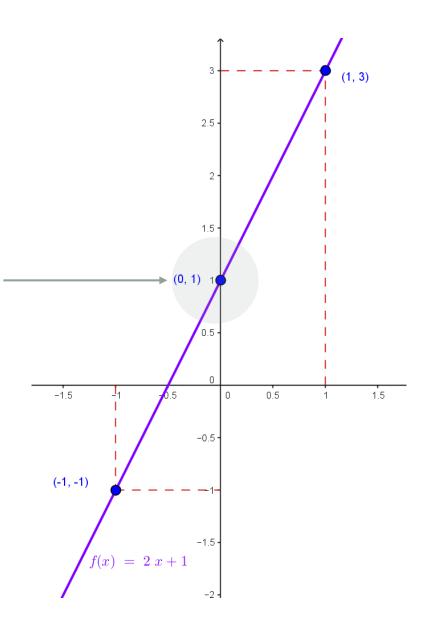
# Ejemplo

La función f(x) = 2x + 1tiene 2 de pendiente. Por cada unidad que aumenta x, la imagen (y) aumenta el doble

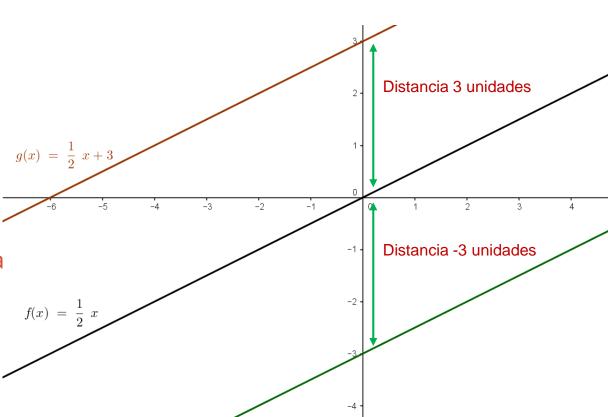
Ordenada en el origen

#### Tabla de valores

| X  | f(x) |
|----|------|
| -1 | -1   |
| 0  | 1    |
| 1  | 3    |



# Ejemplo



Las tres rectas son paralela pues tienen la misma pendiente.

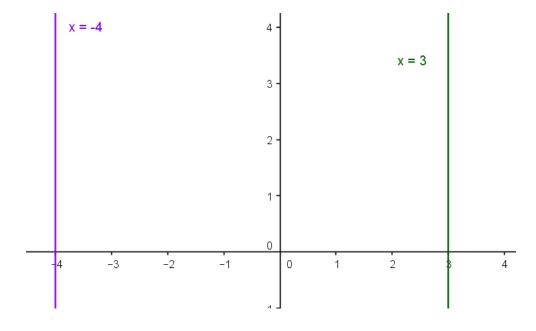
 $h(x) = \frac{1}{2} x - 3$ 

# Rectas que no son funciones

• Las expresiones del tipo x = k siendo k una constante se representa como una recta vertical al eje de abscisas que pasa por el punto (k,0).

Estas rectas no son funciones, pues un solo valor tiene

infinitas imágenes.



# LA FUNCIÓN CUADRÁTICA

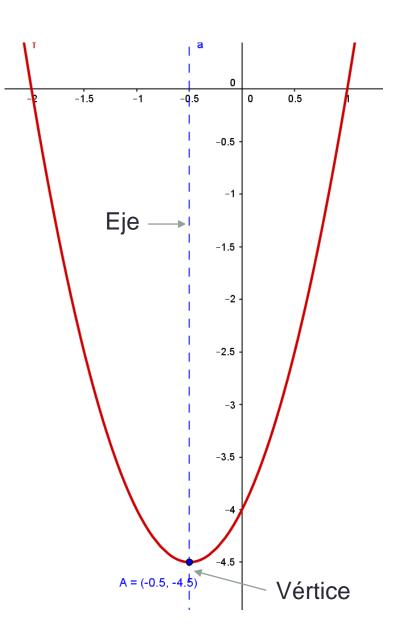
Parábolas

# La función cuadrática

 La función cuadrática se encuentra definida por una expresión algebraica que es un polinomio de grado 2.

$$f(x) = ax^2 + bx + c$$

 La representación gráfica de estas funciones son parábolas con el eje de la parábola paralelo al eje de ordenadas.



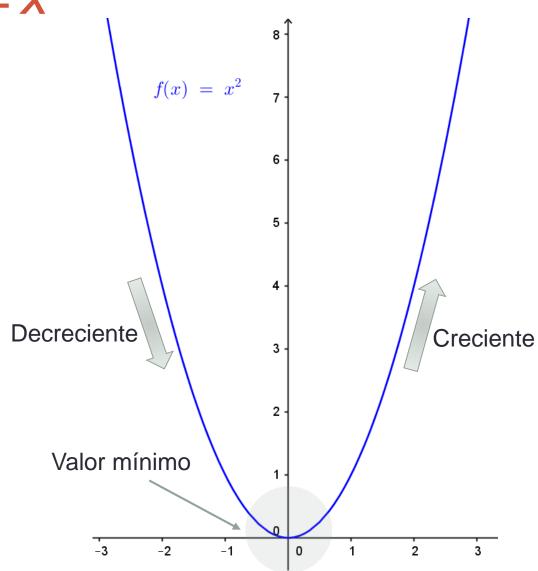
# La función $f(x) = x^2$

### La función $f(x) = x^2$

- Siempre es positiva
- Es par
- Para valores negativos es decreciente
- Para valores positivos es creciente
- Para x = 0 alcanza su valor mínimo, que es 0.

#### Tabla de valores

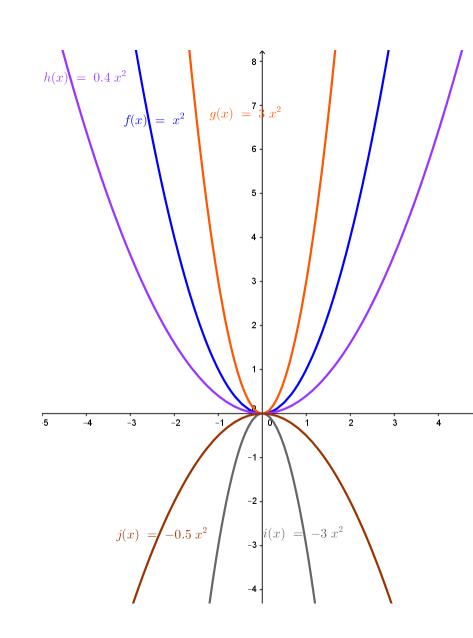
| X     | f(x)  |
|-------|-------|
| -3    | 9     |
| -1,25 | 1,562 |
| 0     | 0     |
| 1     | 1     |
| 2     | 4     |



# La función $f(x)=kx^2$

La función  $f(x) = kx^2$  se puede estudiar a partir de  $g(x) = x^2$ 

- Si 0<k<1, la función f tiene las ramas mas abiertas que g
- Si k > 1, la función f tiene las ramas mas cerradas que g
- Si k < 0, la función f invierte las ramas respecto de g
- En todos los casos, el eje de la parábola es el eje de abscisas y el vértice (0,0)

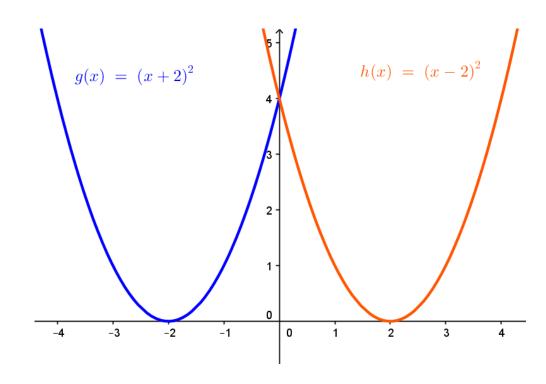


# La función $f(x)=(x+k)^2$

La función  $f(x) = (x + k)^2$  se puede estudiar a partir de  $g(x) = x^2$ 

- Si k<0, la función **f** se desplazará hacia la derecha **k** unidades.
- Si k > 0, la función f se desplazará hacia la izquierda k unidades.

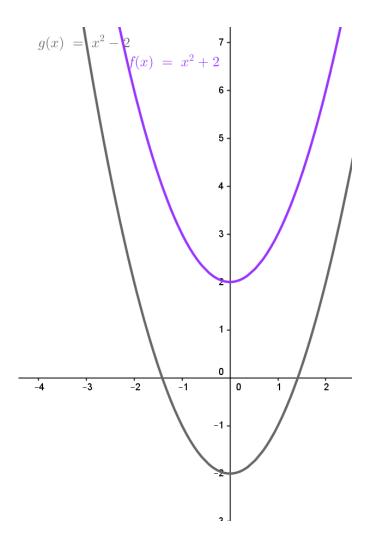
El vértice se desplaza a (k,0)y el eje de la parábola se traslada a x = k



# La función $f(x)=x^2+k$

La función  $f(x) = x^2 + k$  se puede estudiar a partir de  $g(x) = x^2$ 

- Si k<0, la función f sufrirá un desplazamiento inferior de k unidades
- Si k > 0, la función f sufrirá un desplazamiento superior k unidades.
- El vértice se desplaza a (0,k) y el eje de la parábola sigue siendo el eje OY



# La función cuadrática $f(x) = ax^2 + bx + c$

La función cuadrática completa viene dada por la expresión

$$f(x) = ax^2 + bx + c$$

Las propiedades más importantes son:

- Si a > 0 la parábola está abierta hacia arriba
- SI a < 0 la parábola está abierta hacia abajo</li>
- El **vértice** de la parábola es  $V_p = \left(-\frac{b}{2a}, -\frac{b^2-4ac}{4a}\right)$
- El **eje** de la parábola es la recta  $x = -\frac{b}{2a}$
- Los **puntos de corte** con el eje de abscisas se obtiene resolviendo la ecuación de segundo grado  $ax^2 + bx + c = 0$
- El **punto de corte** con el eje de ordenadas es (0,c)

# Justificación del cálculo del vértice de una parábola.

$$f(x) = ax^2 + bx + c = a\left(x^2 + \frac{b}{a}x + \frac{c}{a}\right) = a\left(x^2 + \frac{b}{a}x + \frac{c}{a} + \frac{b^2}{4a} - \frac{b^2}{4a}\right) = a(x^2 + bx) + c = a\left(x^2 + \frac{b}{a}x + \frac{c}{a}\right) = a(x^2 + bx) + c = a(x^2 + \frac{b}{a}x + \frac{c}{a}) = a(x^2 + \frac{b}{a}x + \frac{c}{a} + \frac{b^2}{4a} - \frac{b^2}{4a}) = a(x^2 + \frac{b}{a}x + \frac{c}{a} + \frac{b^2}{4a} - \frac{b^2}{4a})$$

$$=a\left(\left(x+\frac{b}{2a}\right)^2+\frac{c}{a}-\frac{b^2}{4a}\right)=a\left(\left(x+\frac{b}{2a}\right)^2+\frac{4c-b^2}{4a}\right)=a\left(\left(x+\frac{b}{2a}\right)^2-\frac{b^2-4a}{4a}\right)$$

Desplazamiento horizontal respecto a f(x)=x<sup>2</sup>

Desplazamiento vertical respecto a  $f(x)=x^2$