CONJUNTOS

Definición

Un conjunto es una colección de objetos de cualquier clase.

Un conjunto se suele definir por uno de estos dos métodos:

Por extensión, indicando los elementos del conjunto en una lista

Por comprensión, indicando mediante palabras las propiedades que permiten a un objeto pertenecer al conjunto

Los conjuntos se notarán con una letra mayúscula y se encerrarán entre llaves sus elementos o su definición

Ejemplos

Por comprensión $A = \{x/x \text{ es un número natural, par de una cifra}\}$

Por extensión $A = \{2, 3, 5, 7, 9\}$

Pertenencia a un conjunto

Entre un elemento de un conjunto y el conjunto se establece la relación de pertenencia.

La letra griega ∈ (épsilon) para especificar que un objeto pertenece a un conjunto, es decir, es un elemento. La negación del símbolo de pertenencia es ∉.

Ejemplo

El conjunto de los números raciones puede definirse como:

$$\mathbb{Q} = \left\{ \frac{p}{q} / p \ y \ q \in \mathbb{Z} \ y \ q \neq 0 \right\}$$

Podemos decir que: $\frac{2}{5} \in \mathbb{Q}$, $1,4 \in \mathbb{Q}$ o $\sqrt{3} \notin \mathbb{Q}$

Conjuntos finitos e infinitos

Se dice que un conjunto es finito, si tiene un número finito de elementos, es decir, pueden ser contados y termina esa cuenta en un número determinado.

En cualquier otro caso el conjunto es infinito.

Ejemplos

El conjunto de las letras vocales es un conjunto finito

$$A = \{a,e,i,o,u\}$$

El conjunto de los números naturales es infinito:

$$\mathbb{N} = \{1, 2, 3, 4, 5, \dots \}$$

Relación de inclusión (subconjuntos)

Un subconjunto B de un conjunto A, es otro conjunto tal que todos los elementos de B pertenecen en A.

Para indicar que B es un subconjunto de A se utiliza el símbolo **□**:

 $B \subset A$ (B está incluido en A, o bien, A contiene a B)

Ejemplos

 $A = \{letras\}; B = \{letras \ vocales\} B \subset A$, cualquier letra vocal se encuentra en el conjunto de letras.

El conjunto de los números naturales

$$\mathbb{N} = \{1, 2, 3, 4, 5, \dots \}$$

contiene al conjunto de los múltiplos de 3

$$M = \{3,6,9,12,15 \dots\}$$

Conjuntos disjuntos, el conjunto vacío

Se dice que dos **conjuntos son disjuntos** si no tienen ningún elemento en común.

En la teoría de conjuntos existe el **conjunto vacío**, un conjunto que no tiene elementos. Es representado por \emptyset .

Cualquier conjunto contiene al conjunto vacío $\emptyset \subset A$

Igualdad de conjuntos

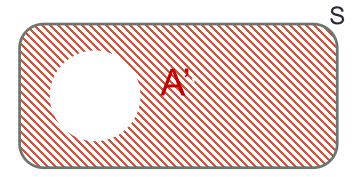
Se dice que dos conjuntos son iguales si tienen los mismos elementos. Una condición necesaria y suficiente para que dos conjuntos sean iguales es que ambos se incluyan, es decir:

 $A = B si y s\'olo si A \subset B y B \subset A$

OPERACIONES CON CONJUNTOS

El conjunto universal y el complementario

En matemáticas, cuando deseamos trabajar con conjuntos tenemos en cuenta el conjunto de todos los elementos que constituyen el dominio del problema (conjunto universal):


En probabilidad el espacio muestral.

En geometría de dos dimensiones, el conjunto de todos los puntos del plano.

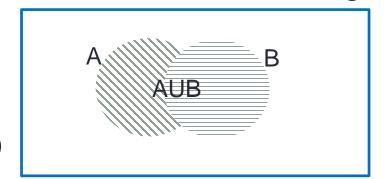
El **conjunto complementario** de uno dado, es el conjunto de todos los puntos del conjunto universal que no está en el conjunto.

El complementario suele representarse por: A', $A^c o \bar{A}$

Unión de conjuntos

La unión de dos conjuntos, es otro conjunto que contiene los elementos de ambos. La operación unión se representa por el símbolo U.

Propiedades


1.
$$A \cup A = A$$

2. $A \cup S = S$ (siendo S el conjunto universal)

$$A \cup \emptyset = A$$

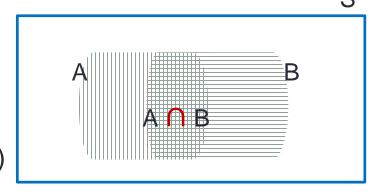
4.
$$A \cup A' = S$$

5.
$$A \cup B = B \cup A$$

Intersección de conjuntos

La intersección de dos conjuntos, es otro conjunto que contiene los elementos que se encuentran a la vez en ambos. La operación intersección se representa por el símbolo ∩.

Propiedades


$$1. \quad A \cap A = A$$

2.
$$A \cap \emptyset = \emptyset$$

3. $A \cap S = A$ (siendo S el conjunto universal)

5.
$$A \cap B = B \cap A$$

Leyes básicas del álgebra de conjuntos I

Idempotente

$$A \cup A = A$$

$$A \cap A = A$$

Identidades

$$A \cup \emptyset = A$$

$$A \cap \emptyset = \emptyset$$

$$A \cup S = S$$

$$A \cap S = A$$

Complementarios

$$A \cup A' = S$$

$$A \cap A' = \emptyset$$

$$(A')' = A$$

$$S' = \emptyset \ y \ \emptyset' = S$$

Conmutativa

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

Leyes básicas del álgebra de conjuntos II

Asociativa

$$A \cup (B \cup C) = (A \cup B) \cup C$$

$$A \cap (B \cap C) = (A \cap B) \cap C$$

Distributiva

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Leyes de Morgan

$$(A \cup B)' = A' \cap B'$$

$$(A \cap B)' = A' \cup B'$$